4,074 research outputs found

    Canonical Theory of 2+1 Gravity

    Get PDF
    Recently 2+1 dimensional gravity theory, especially AdS3{\rm AdS_3} has been studied extensively. It was shown to be equivalent to the 2+1 Chern-Simon theory and has been investigated to understand the black hole thermodynamics, i.e. Hawking temperature and others. The purpose of this report is to investigate the canonical formalism of the original 2+1 Einstein gravity theory instead of the Chern-Simon theory. For the spherically symmetric space-time, local conserved quantities(local mass and angular momentum) are introduced and using them canonical quantum theory is defined. Constraints are imposed on state vectors and solved analytically. The strategy to obtain the solution is followed by our previous work.Comment: 6 pages, talk given at LLWI-2000: From Particles to Universe, Alberta, 20-26 February 200

    Models of Meson-Baryon Reactions in the Nucleon Resonance Region

    Full text link
    It is shown that most of the models for analyzing meson-baryon reactions in the nucleon resonance region can be derived from a Hamiltonian formulation of the problem. An extension of the coupled-channel approach to include ππN\pi\pi N channel is briefly described and some preliminary results for the N(1535)N^*(1535) excitation are presented.Comment: Latex 13 pages; to appear in the Proceedings of Workshop on the Physics of excited nucleons (NSTAR2004), Grenoble (France), March 24-27, 200

    Does a black hole rotate in Chern-Simons modified gravity?

    Get PDF
    Rotating black hole solutions in the (3+1)-dimensional Chern-Simons modified gravity theory are discussed by taking account of perturbation around the Schwarzschild solution. The zenith-angle dependence of a metric function related to the frame-dragging effect is determined from a constraint equation independently of a choice of the embedding coordinate. We find that at least within the framework of the first-order perturbation method, the black hole cannot rotate for finite black hole mass if the embedding coordinate is taken to be a timelike vector. However, the rotation can be permitted in the limit of M/r0M/r \to 0 (where MM is the black hole mass and rr is the radius). For a spacelike vector, the rotation can also be permitted for any value of the black hole mass.Comment: 4 pages, Accepted for publication in Phys. Rev.

    Weak localization and spin splitting in inversion layers on p-type InAs

    Full text link
    We report on the magnetoconductivity of quasi two-dimensional electron systems in inversion layers on p-type InAs single crystals. In low magnetic fields pronounced features of weak localization and antilocalization are observed. They are almost perfectly described by the theory of Iordanskii, Lyanda-Geller and Pikus. This allows us to determine the spin splitting and the Rashba parameter of the ground electric subband as a function of the electron density.Comment: Accepted for publication in Phys. Rev. B, 4 page

    Global well-posedness of the Kirchhoff equation and Kirchhoff systems

    Get PDF
    This article is devoted to review the known results on global well-posedness for the Cauchy problem to the Kirchhoff equation and Kirchhoff systems with small data. Similar results will be obtained for the initial-boundary value problems in exterior domains with compact boundary. Also, the known results on large data problems will be reviewed together with open problems.Comment: arXiv admin note: text overlap with arXiv:1211.300

    Nitrogen Fixation Mutants of the Actinobacterium Frankia Casuarinae CcI3

    Get PDF
    Frankia is a representative genus of nitrogen-fixing (N2-fixing) actinobacteria; however, the molecular mechanisms underlying various phenomena such as the differentiation of a N2 fixation-specific structure (vesicle) and the regulation of N2 fixation (nif) genes, have yet to be elucidated in detail. In the present study, we screened hyphal fragments of Frankia casuarinae that were mutagenized by 1-methyl-3-nitro-1-nitrosoguanidine or gamma rays, and isolated 49 candidate N2 fixation mutants. Twelve of these mutants were selected for further study, and their abilities to grow in NH3-deficient (N-) liquid media and their rates of acetylene reduction activities were evaluated. Eleven mutant strains were confirmed to lack the ability to fix N2. Five mutant strains formed significantly reduced numbers of vesicles, while some failed to form large mature vesicles. These vesicle mutants also exhibited an aberrant hyphal morphology, suggesting a relationship between vesicle differentiation and hyphal branching. Ten mutants showed significant reductions in the expression of nifE, nifH, and nifV genes under N- conditions. The genome sequencing of eight mutants identified 20 to 400 mutations. Although mutant strains N3H4 and N6F4 shared a large number of mutations (108), most were unique to each strain. Mutant strain N7C9 had 3 mutations in the nifD and nifH genes that may result in the inability to fix N2. The other mutant strains did not have any mutations in any known N2 fixation-related genes, indicating that they are novel N2 fixation mutants

    True polar wander driven by late-stage volcanism and the distribution of paleopolar deposits on Mars

    Full text link
    The areal centroids of the youngest polar deposits on Mars are offset from those of adjacent paleopolar deposits by 5-10 degrees. We test the hypothesis that the offset is the result of true polar wander (TPW), the motion of the solid surface with respect to the spin axis, caused by a mass redistribution within or on the surface of Mars. In particular, we consider TPW driven by late-stage volcanism during the late Hesperian to Amazonian. There is observational and qualitative support for this hypothesis: in both North and South, observed offsets lie close to a great circle 90 degrees from Tharsis, as expected for polar wander after Tharsis formed. We calculate the magnitude and direction of TPW produced by mapped late-stage lavas for a range of lithospheric thicknesses, lava thicknesses, eruption histories, and prior polar wander events. If Tharsis formed close to the equator, the stabilizing effect of a fossil rotational bulge located close to the equator leads to predicted TPW of <2 degrees, too small to account for observed offsets. If, however, Tharsis formed far from the equator, late-stage TPW driven by low-latitude, late-stage volcanism would be 6-33 degrees, similar to that inferred from the location of paleopolar deposits. 4.4+/-1.3x10^19 kg of young erupted lava can account for the offset of the Dorsa Argentea Formation from the present-day south rotation pole. This mass is consistent with prior mapping-based estimates and would imply a mass release of CO2 by volcanic degassing similar to that in the atmosphere at the present time. The South Polar Layered Deposits are offset from the spin axis in the opposite sense to the other paleopolar deposits. This can be explained by an additional contribution from a plume beneath Elysium. We conclude with a list of observational tests of the TPW hypothesis.Comment: Accepted by Earth and Planetary Science Letters. 3 tables, 8 figure

    Dynamical Coupled-Channels Effects on Pion Photoproduction

    Full text link
    The electromagnetic pion production reactions are investigated within the dynamical coupled-channels model developed in {\bf Physics Reports, 439, 193 (2007)}. The meson-baryon channels included in this study are γN\gamma N, πN\pi N, ηN\eta N, and the πΔ\pi\Delta, ρN\rho N and σN\sigma N resonant components of the ππN\pi\pi N channel. With the hadronic parameters of the model determined in a recent study of πN\pi N scattering, we show that the pion photoproduction data up to the second resonance region can be described to a very large extent by only adjusting the bare γNN\gamma N \to N^* helicity amplitudes, while the non-resonant electromagnetic couplings are taken from previous works. It is found that the coupled-channels effects can contribute about 10 - 20 % of the production cross sections in the Δ\Delta (1232) resonance region, and can drastically change the magnitude and shape of the cross sections in the second resonance region. The importance of the off-shell effects in a dynamical approach is also demonstrated. The meson cloud effects as well as the coupled-channels contributions to the γNN\gamma N \to N^* form factors are found to be mainly in the low Q2Q^2 region. For the magnetic M1 γNΔ\gamma N \to \Delta (1232) form factor, the results are close to that of the Sato-Lee Model. Necessary improvements to the model and future developments are discussed.Comment: Corrected version. 14 pages, 10 figure

    Double and single pion photoproduction within a dynamical coupled-channels model

    Full text link
    Within a dynamical coupled-channels model which has already been fixed from analyzing the data of the pi N -> pi N and gamma N -> pi N reactions, we present the predicted double pion photoproduction cross sections up to the second resonance region, W< 1.7 GeV. The roles played by the different mechanisms within our model in determining both the single and double pion photoproduction reactions are analyzed, focusing on the effects due to the direct gamma N -> pi pi N mechanism, the interplay between the resonant and non-resonant amplitudes, and the coupled-channels effects. The model parameters which can be determined most effectively in the combined studies of both the single and double pion photoproduction data are identified for future studies.Comment: Version to appear in PRC. 16 pages, 13 figure
    corecore